Product Description
V Belt Pulley with ISO9001 (SPA, SPB, SPC, SPZ)
1. V-Pulley
Taper Bore
SPZ SPA CHINAMFG SPC
2. V-Pulley
Stock Bore
SPZ SPA CHINAMFG SPC
3. V-Pulley
Adjustable Speed
TB-1 TB-2 SB-1 SB-2
4. V-Pulley
Multi-Wedged
J L M
50 – 1 x SPZ – 1008 rü 15 | Taper-v-belt pulley |
56 – 1 x SPZ – 1008 rü 15 | Taper-v-belt pulley |
60 – 1 x SPZ – 1008 bü | Taper-v-belt pulley |
63 – 1 x SPZ – 1108 bü | Taper-v-belt pulley |
67 – 1 x SPZ – 1108 bü | Taper-v-belt pulley |
71 – 1 x SPZ – 1108 bü | Taper-v-belt pulley |
75 – 1 x SPZ – 1108 bü | Taper-v-belt pulley |
80 – 1 x SPZ – 1210 bü | Taper-v-belt pulley |
85 – 1 x SPZ – 1210 bü | Taper-v-belt pulley |
90 – 1 x SPZ – 1210 bü | Taper-v-belt pulley |
95 – 1 x SPZ – 1210 bü | Taper-v-belt pulley |
100 – 1 x SPZ – 1210 bü | Taper-v-belt pulley |
106 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
112 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
118 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
125 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
132 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
140 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
150 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
160 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
170 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
180 – 1 x SPZ – 1610 bü | Taper-v-belt pulley |
190 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
200 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
224 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
250 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
280 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
315 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
355 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
400 – 1 x SPZ – 2012 bü | Taper-v-belt pulley |
500 – 1 x SPZ – 2517 | Taper-v-belt pulley |
50 – 2 x SPZ – 1008 rü 26 | Taper-v-belt pulley |
56 – 2 x SPZ – 1108 rü 26 | Taper-v-belt pulley |
60 – 2 x SPZ – 1108 rü 26 | Taper-v-belt pulley |
63 – 2 x SPZ – 1108 bü | Taper-v-belt pulley |
67 – 2 x SPZ – 1108 bü | Taper-v-belt pulley |
71 – 2 x SPZ – 1108 | Taper-v-belt pulley |
75 – 2 x SPZ – 1210 bü | Taper-v-belt pulley |
80 – 2 x SPZ – 1210 bü | Taper-v-belt pulley |
85 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
90 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
95 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
100 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
106 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
112 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
118 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
125 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
132 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
140 – 2 x SPZ – 1610 bü | Taper-v-belt pulley |
150 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
160 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
170 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
180 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
190 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
200 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
224 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
250 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
280 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
315 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
355 – 2 x SPZ – 2012 bü | Taper-v-belt pulley |
400 – 2 x SPZ – 2517 bü | Taper-v-belt pulley |
450 – 2 x SPZ – 2517 bü | Taper-v-belt pulley |
500 – 2 x SPZ – 2517 bü | Taper-v-belt pulley |
63 – 3 x SPZ – 1108 rü 17 | Taper-v-belt pulley |
67 – 3 x SPZ – 1108 rü 17 | Taper-v-belt pulley |
71 – 3 x SPZ – 1108 rü 17 | Taper-v-belt pulley |
75 – 3 x SPZ – 1210 rü 14 | Taper-v-belt pulley |
80 – 3 x SPZ – 1210 rü 14 | Taper-v-belt pulley |
85 – 3 x SPZ – 1610 rü 14 | Taper-v-belt pulley |
90 – 3 x SPZ – 1610 rü 14 | Taper-v-belt pulley |
95 – 3 x SPZ – 1610 rü 14 | Taper-v-belt pulley |
100 – 3 x SPZ – 1610 rü 14 | Taper-v-belt pulley |
106 – 3 x SPZ – 1610 rü 14 | Taper-v-belt pulley |
112 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
118 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
125 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
132 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
140 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
150 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
160 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
170 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
180 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
190 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
200 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
224 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
250 – 3 x SPZ – 2012 bü | Taper-v-belt pulley |
280 – 3 x SPZ – 2517 bü | Taper-v-belt pulley |
315 – 3 x SPZ – 2517 bü | Taper-v-belt pulley |
355 – 3 x SPZ – 2517 bü | Taper-v-belt pulley |
400 – 3 x SPZ – 2517 bü | Taper-v-belt pulley |
450 – 3 x SPZ – 2517 bü | Taper-v-belt pulley |
500 – 3 x SPZ – 2517 bü | Taper-v-belt pulley |
630 – 3 x SPZ – 2517 bü | Taper-v-belt pulley |
63 – 4 x SPZ – 1108 | Taper-v-belt pulley |
67 – 4 x SPZ – 1108 | Taper-v-belt pulley |
71 – 4 x SPZ – 1108 | Taper-v-belt pulley |
75 – 4 x SPZ – 1210 rü 26 | Taper-v-belt pulley |
80 – 4 x SPZ – 1210 rü 26 | Taper-v-belt pulley |
85 – 4 x SPZ – 1610 rü 26 | Taper-v-belt pulley |
90 – 4 x SPZ – 1610 rü 26 | Taper-v-belt pulley |
95 – 4 x SPZ – 1610 rü 26 | Taper-v-belt pulley |
100 – 4 x SPZ – 2012 rü 20 | Taper-v-belt pulley |
106 – 4 x SPZ – 2012 rü 20 | Taper-v-belt pulley |
112 – 4 x SPZ – 2012 bü | Taper-v-belt pulley |
118 – 4 x SPZ – 2012 bü | Taper-v-belt pulley |
125 – 4 x SPZ – 2012 bü | Taper-v-belt pulley |
132 – 4 x SPZ – 2012 bü | Taper-v-belt pulley |
140 – 4 x SPZ – 2012 bü | Taper-v-belt pulley |
150 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
160 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
170 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
180 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
190 – 4 x SPZ – 2517 | Taper-v-belt pulley |
200 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
224 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
250 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
280 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
315 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
355 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
400 – 4 x SPZ – 2517 bü | Taper-v-belt pulley |
450 – 4 x SPZ – 3571 bü | Taper-v-belt pulley |
500 – 4 x SPZ – 3571 bü | Taper-v-belt pulley |
630 – 4 x SPZ – 3030 bü | Taper-v-belt pulley |
800 – 4 x SPZ – 3030 e.b. | Taper-v-belt pulley |
85 – 5 x SPZ – 1610 rü 38 | Taper-v-belt pulley |
90 – 5 x SPZ – 1610 rü 38 | Taper-v-belt pulley |
95 – 5 x SPZ – 1610 rü 38 | Taper-v-belt pulley |
100 – 5 x SPZ – 2012 rü 32 | Taper-v-belt pulley |
106 – 5 x SPZ – 2012 rü 32 | Taper-v-belt pulley |
112 – 5 x SPZ – 2012 bü | Taper-v-belt pulley |
118 – 5 x SPZ – 2012 bü | Taper-v-belt pulley |
125 – 5 x SPZ – 2012 bü | Taper-v-belt pulley |
132 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
140 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
150 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
160 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
180 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
200 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
224 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
250 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
280 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
315 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
355 – 5 x SPZ – 2517 bü | Taper-v-belt pulley |
400 – 5 x SPZ – 3571 bü | Taper-v-belt pulley |
450 – 5 x SPZ – 3571 bü | Taper-v-belt pulley |
500 – 5 x SPZ – 3030 bü | Taper-v-belt pulley |
630 – 5 x SPZ – 3030 bü | Taper-v-belt pulley |
100 – 6 x SPZ – 2012 rü 44 | Taper-v-belt pulley |
106 – 6 x SPZ – 2012 rü 44 | Taper-v-belt pulley |
112 – 6 x SPZ – 2012 rü 44 | Taper-v-belt pulley |
118 – 6 x SPZ – 2517 rü 31 | Taper-v-belt pulley |
Choose GOODLUCK(TAI)
1. Our company boasts a combination of research and development, production and sales with highly professional capabilities.
2. Our company produces the pulley with the following: Drive can mitigate impact load; Transmission smooth operation, low noise, low vibration; Transmission of simple structure, easy to adjust; Drive for the manufacture and installation precision of pulley, unlike meshing transmission strictly; It has the function of overload protection; Transmission center distance of 2 axis adjusting range is larger.
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Certification: | ISO |
---|---|
Pulley Sizes: | All |
Manufacturing Process: | Casting |
Samples: |
US$ 0/Piece
1 Piece(Min.Order) | Order Sample |
---|
Customization: |
Available
| Customized Request |
---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
Shipping Cost:
Estimated freight per unit. |
about shipping cost and estimated delivery time. |
---|
Payment Method: |
|
---|---|
Initial Payment Full Payment |
Currency: | US$ |
---|
Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
---|
How does the design of a V pulley affect its performance?
The design of a V pulley plays a crucial role in determining its performance characteristics. Here’s an explanation of how different design aspects of a V pulley can affect its performance:
1. Groove Profile:
The groove profile of a V pulley is designed to match the shape of the V-belt used in the power transmission system. The angle and depth of the groove directly influence the grip between the pulley and the belt. An appropriate groove profile ensures a secure and efficient power transmission, minimizing belt slippage, and maximizing the transfer of torque.
2. Diameter:
The diameter of a V pulley affects both its speed ratio and torque transmission capacity. A larger pulley diameter results in higher belt speed and lower torque transmission, while a smaller diameter pulley provides lower speed and higher torque. The selection of the pulley diameter depends on the desired speed and torque requirements of the application.
3. Material:
The material used for constructing the V pulley impacts its durability, strength, and resistance to wear and corrosion. Common materials include cast iron, steel, aluminum, and plastic. The choice of material depends on factors such as the application environment, load capacity, and operating conditions. A robust and appropriate material selection ensures the pulley can withstand the demands of the application and maintain its performance over time.
4. Balance and Runout:
A well-balanced V pulley is essential to minimize vibration and ensure smooth operation. Imbalances can lead to increased wear on the pulley, belt, and bearings, reducing the overall efficiency and lifespan of the system. Similarly, excessive runout (eccentricity) in the pulley’s rotational movement can cause belt misalignment and increased friction. Proper design and manufacturing techniques are necessary to achieve optimal balance and runout in V pulleys.
5. Taper and Flange:
In some V pulley designs, a taper or flange is incorporated to improve belt tracking and prevent belt wandering or jumping off the pulley. The taper or flange helps guide the belt and maintain proper alignment, enhancing the overall performance and reliability of the power transmission system.
6. Hub Design:
The hub design of a V pulley determines its attachment method to the shaft. It can feature keyways, set screws, or other mechanisms to securely fasten the pulley in place. The hub design should ensure a tight and reliable connection to prevent pulley slippage and maintain accurate power transmission.
7. Surface Finish:
The surface finish of a V pulley can impact its friction characteristics. A smooth and properly finished surface reduces friction between the pulley and the belt, promoting efficient power transmission and minimizing heat generation. Additionally, surface treatments such as coatings or platings can improve the pulley’s resistance to corrosion and wear.
Each of these design factors contributes to the overall performance of a V pulley in terms of power transmission efficiency, belt grip, durability, and reliability. Manufacturers carefully consider these design aspects to ensure optimal performance and compatibility with specific applications and operating conditions.
How do V pulleys affect the performance of lawn and garden equipment?
V pulleys have a significant impact on the performance of lawn and garden equipment by providing power transmission and controlling the speed and torque of various components. Here’s a detailed explanation of how V pulleys affect the performance of lawn and garden equipment:
1. Drive System:
V pulleys are commonly used as part of the drive system in lawn and garden equipment. The driving pulley, often connected to the engine or motor, transfers rotational power to the driven pulley, which is connected to the equipment’s cutting blades, wheels, or other moving parts. The design and size of the V pulleys determine the speed and torque delivered to the equipment.
2. Speed Control:
V pulleys allow for speed control in lawn and garden equipment. By using pulleys of different sizes, the speed ratio between the engine or motor and the driven components can be adjusted. This enables the equipment operator to regulate the speed at which the blades rotate or the wheels turn, ensuring optimal performance for different tasks and terrain conditions.
3. Torque Transfer:
The design of V pulleys allows for efficient transfer of torque from the engine or motor to the driven components. The V-shaped groove in the pulleys, along with the corresponding V-belt, provides excellent grip and traction, preventing slippage and ensuring maximum power transfer. This enables the equipment to handle heavier loads, such as cutting through thick grass or tilling soil.
4. Belt Selection:
The selection of the appropriate V-belt is crucial for optimizing the performance of lawn and garden equipment. Different types of V-belts, such as classical V-belts or cogged V-belts, offer varying levels of flexibility, load capacity, and resistance to heat and wear. Choosing the right belt ensures efficient power transmission and extends the lifespan of the pulleys and belts.
5. Pulley Size and Design:
The size and design of V pulleys impact the performance of lawn and garden equipment. Larger pulleys can provide higher torque and slower blade or wheel speed, making them suitable for heavy-duty tasks. Smaller pulleys, on the other hand, allow for faster speed and lower torque, ideal for lighter cutting or moving applications. The groove profile and depth of the pulleys also play a role in belt engagement and grip, affecting power transmission efficiency.
6. Durability and Maintenance:
V pulleys used in lawn and garden equipment are typically constructed from durable materials such as steel or cast iron to withstand the demands of outdoor use, including exposure to moisture, debris, and vibrations. Regular maintenance, including inspection, cleaning, and occasional belt replacement, is necessary to ensure the continued performance and longevity of the V pulley system.
Overall, V pulleys significantly influence the performance of lawn and garden equipment by enabling efficient power transmission, speed control, and torque transfer. The selection of the right pulleys and belts, along with proper maintenance, ensures optimal performance, durability, and reliability of the equipment in various landscaping and gardening applications.
Can you explain the typical applications of V pulleys in machinery?
V pulleys, also known as V-belt pulleys or sheaves, have a wide range of applications across various machinery and systems. Here’s an explanation of the typical applications of V pulleys:
1. Automotive Systems:
V pulleys are extensively used in automotive systems. They are found in engines, where they transmit power from the crankshaft to various accessories such as the alternator, water pump, power steering pump, and air conditioning compressor. V pulleys in automotive applications ensure efficient power transmission and enable the proper functioning of essential vehicle components.
2. Industrial Machinery:
In industrial machinery, V pulleys find widespread use in power transmission systems. They are commonly employed in belt-driven conveyor systems, where they transfer power from electric motors to drive belts that move materials or products along the conveyor lines. V pulleys are also used in various industrial equipment, such as agricultural machinery, machine tools, printing presses, and packaging machines.
3. HVAC Systems:
Heating, ventilation, and air conditioning (HVAC) systems utilize V pulleys for power transmission. V pulleys are employed in fans, blowers, and pumps used in HVAC systems. They enable the efficient operation of these components and contribute to the proper circulation of air or fluids in buildings, ensuring effective heating, cooling, and ventilation.
4. Appliances:
V pulleys are found in a range of household and commercial appliances. They are used in washing machines and dryers to transmit power from electric motors to the drum or agitator. V pulleys are also employed in power tools, such as drills and saws, to transfer rotational motion from the motor to the cutting or drilling mechanism.
5. Mining and Construction Equipment:
In the mining and construction industries, V pulleys are utilized in heavy machinery and equipment. They are commonly found in excavators, bulldozers, cranes, and loaders, where they transmit power to various components such as hydraulic pumps, winches, and conveyor systems. V pulleys in mining and construction equipment play a crucial role in enabling efficient and reliable operation in demanding environments.
6. Agricultural Equipment:
Agricultural machinery extensively employs V pulleys for power transmission. Tractors, combines, harvesters, and other agricultural equipment utilize V pulleys to transfer power to different components, including pumps, augers, conveyors, and cutting mechanisms. V pulleys in agricultural machinery facilitate the efficient performance of farming operations.
These are just a few examples of the typical applications of V pulleys in machinery. Due to their versatility, reliability, and ability to handle high torque, V pulleys are widely utilized in numerous industries and mechanical systems to ensure efficient power transmission and proper functioning of various equipment and machinery.
editor by CX
2024-04-30